Retrieving rice (Oryza sativa L.) net photosynthetic rate from UAV multispectral images based on machine learning methods

Author:

Wu Tianao,Zhang Wei,Wu Shuyu,Cheng Minghan,Qi Lushang,Shao Guangcheng,Jiao Xiyun

Abstract

Photosynthesis is the key physiological activity in the process of crop growth and plays an irreplaceable role in carbon assimilation and yield formation. This study extracted rice (Oryza sativa L.) canopy reflectance based on the UAV multispectral images and analyzed the correlation between 25 vegetation indices (VIs), three textural indices (TIs), and net photosynthetic rate (Pn) at different growth stages. Linear regression (LR), support vector regression (SVR), gradient boosting decision tree (GBDT), random forest (RF), and multilayer perceptron neural network (MLP) models were employed for Pn estimation, and the modeling accuracy was compared under the input condition of VIs, VIs combined with TIs, and fusion of VIs and TIs with plant height (PH) and SPAD. The results showed that VIs and TIs generally had the relatively best correlation with Pn at the jointing–booting stage and the number of VIs with significant correlation (p< 0.05) was the largest. Therefore, the employed models could achieve the highest overall accuracy [coefficient of determination (R2) of 0.383–0.938]. However, as the growth stage progressed, the correlation gradually weakened and resulted in accuracy decrease (R2 of 0.258–0.928 and 0.125–0.863 at the heading–flowering and ripening stages, respectively). Among the tested models, GBDT and RF models could attain the best performance based on only VIs input (with R2 ranging from 0.863 to 0.938 and from 0.815 to 0.872, respectively). Furthermore, the fusion input of VIs, TIs with PH, and SPAD could more effectively improve the model accuracy (R2 increased by 0.049–0.249, 0.063–0.470, and 0.113–0.471, respectively, for three growth stages) compared with the input combination of VIs and TIs (R2 increased by 0.015–0.090, 0.001–0.139, and 0.023–0.114). Therefore, the GBDT and RF model with fused input could be highly recommended for rice Pn estimation and the methods could also provide reference for Pn monitoring and further yield prediction at field scale.

Funder

Jiangsu Provincial Key Research and Development Program

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3