The Rice Qa-SNAREs in SYP13 Subfamily Are Involved in Regulating Arbuscular Mycorrhizal Symbiosis and Seed Fertility

Author:

Liu Ying-Na,Liu Cheng-Chen,Guo Rui,Tian Li,Cheng Jian-Fei,Wu Ya-Nan,Wang Dong,Wang Bin

Abstract

Qa-SNARE gene SYP132 (isoform α) was previously reported to affect arbuscular mycorrhizal (AM) symbiosis in the legume species Medicago truncatula. In non-legumes especially monocots, it remains unknown whether certain SNARE genes are also involved in AM symbiosis. In this work, we studied a rice orthologous gene OsSYP132, which showed induced expression in mycorrhizal roots and two paralogous genes OsSYP131a and OsSYP131b, which were not induced by the AM fungus Rhizophagus irregularis. After employing CRISPR/Cas9 technique to generate their mutants, the Ossyp131a homozygous mutant T0 plants exhibited a dwarf phenotype and produced no fertile seeds, indicating a required role of this gene in seed fertility. Unlike the case in legume, the Ossyp132 mutants exhibited normal mycorrhizal phenotype, so did the Ossyp131b mutants. In the Ossyp131b Ossyp132 double mutants, however, the colonization rate and arbuscule abundance level decreased markedly, indicating an impaired fungal proliferation ability in rice roots. Such a defect was further confirmed by the reduced expression levels of AM marker genes. Our results in rice therefore demonstrated that while SYP13II members showed evolutionary and induction patterns specific to symbiosis, AM symbiosis is in fact controlled by the combined action of both SYP13I and SYP13II clades, revealing a functional redundancy among SYNTAXIN genes in mutualism.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mycorrhizal Symbiosis: Evolution, Opportunities, Challenges, and Prospects;Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Inoculum Production and Application;2024

2. Extracellular Vesicles in the Arbuscular Mycorrhizal Symbiosis: Current Understanding and Future Perspectives;Molecular Plant-Microbe Interactions®;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3