Current progress in research focused on salt tolerance in Vitis vinifera L.

Author:

Han Yan,Li Xiujie

Abstract

Soil salinization represents an increasingly serious threat to agronomic productivity throughout the world, as rising ion concentrations can interfere with the growth and development of plants, ultimately reducing crop yields and quality. A combination of factors is driving this progressive soil salinization, including natural causes, global climate change, and irrigation practices that are increasing the global saline-alkali land footprint. Salt stress damages plants both by imposing osmotic stress that reduces water availability while also inducing direct sodium- and chlorine-mediated toxicity that harms plant cells. Vitis vinifera L. exhibits relatively high levels of resistance to soil salinization. However, as with other crops, grapevine growth, development, fruit yields, and fruit quality can all be adversely affected by salt stress. Many salt-tolerant grape germplasm resources have been screened in recent years, leading to the identification of many genes associated to salt stress and the characterization of the mechanistic basis for grapevine salt tolerance. These results have also been leveraged to improve grape yields through the growth of more tolerant cultivars and other appropriate cultivation measures. The present review was formulated to provide an overview of recent achievements in the field of research focused on grapevine salt tolerance from the perspectives of germplasm resource identification, the mining of functional genes, the cultivation of salt-tolerant grape varieties, and the selection of appropriate cultivation measures. Together, we hope that this systematic review will offer insight into promising approaches to enhancing grape salt tolerance in the future.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3