Effect of soil management systems on the rhizosphere bacterial community structure of tobacco: Continuous cropping vs. paddy-upland rotation

Author:

Wang Peng,Yan Shen,Zhang Wenshui,Xie Xiaodan,Li Mingjie,Ren Tianbao,Gu Li,Zhang Zhongyi

Abstract

Rhizosphere bacteria play important role in soil nutrient cycling and plant growth, and their richness and diversity are influenced by soil management systems. However, the specific changes in tobacco rhizosphere bacterial community structure in continuous and tobacco-rice rotation cropping systems remain uninvestigated. In this study, soil properties and the composition of the rhizosphere bacterial community in tobacco monocropping and tobacco-rice rotation cropping systems were analyzed. Moreover, the comparison of rhizosphere bacterial community structure between tobacco continuous and tobacco-rice rotation cropping systems was performed via high-throughput sequencing. The changes in the composition of the rhizosphere bacterial community were investigated at different tobacco growth stages. The results showed that continuous tobacco cropping increased the soil soluble organic carbon (SOC), total nitrogen (TN), and the content of other nutrients (e.g., available phosphorus and available potassium) compared to tobacco-rice rotation cropping. However, monocropping decreased bacterial alpha-diversity and altered the community composition when compared to the rotation cropping system. At the phylum level, the relative abundance of Proteobacteria, Gemmatimonadetes, and Bacteroidetes increased in the continuous cropping soil, while that of Acidobacteria, Firmicutes, and Actinobacteria decreased. At the genera level, the average abundance of the dominant genus Bacillus varied from 12.96% in continuous cropping libraries to 6.33% in the rotation cropping libraries (p < 0.05). Additionally, several other taxa, such as o_Acidobacteriales and Candidatus_Solibacter decreased from 7.63 to 6.62% (p < 0.05) and 4.52 to 2.91% (p < 0.05), respectively. However, the relative abundance of f_Gemmatimonadaceae and c_Subgroup_6 showed an increase of 1.46% (p < 0.05) and 1.63% (p < 0.05) in the tobacco-rice rotation cropping system, respectively. The results of NMDS indicated that the rhizobacteria community structure differed in the two cropping systems. In tobacco, the rhizosphere bacterial community structure showed no significant changes in the prosperous long-term stage and topping stage, but the composition changed significantly in the mature stage.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3