CeO2NP priming enhances the seed vigor of alfalfa (Medicago sativa) under salt stress

Author:

Gao Jinzhu,Liu Yanzhi,Zhao Donghao,Ding Yanzhi,Gao Le,Su Xihao,Song Kexiao,He Xueqing

Abstract

Soil salinization is a common environmental problem that seriously threatens crop yield and food security, especially through its impact on seed germination. Nanoparticle priming, an emerging seed treatment method, is receiving increasing attention in improving crop yield and stress resistance. This study used alfalfa seeds as materials to explore the potential benefits of cerium oxide nanoparticle (CeO2NP) priming to promote seed germination and improve salt tolerance. CeO2NPs at concentrations up to 500 mg/L were able to significantly alleviate salt stress in alfalfa seeds (200 mM), with 50 mg/L of CeO2NP having the best effect, significantly (P< 0.05) increasing germination potential (from 4.0% to 51.3%), germination rate (from 10.0% to 62.7%), root length (from 8.3 cm to 23.1 cm), and seedling length (from 9.8 cm to 13.7 cm). Priming treatment significantly (P< 0.05) increased seed water absorption by removing seed hardness and also reducing abscisic acid and jasmonic acid contents to relieve seed dormancy. CeO2NP priming increased α-amylase activity and osmoregulatory substance level, decreased reactive oxygen species and malonaldehyde contents and relative conductivity, and increased catalase enzyme activity. Seed priming regulated carotenoid, zeatin, and plant hormone signal transduction pathways, among other metabolic pathways, while CeO2NP priming additionally promoted the enrichment of α-linolenic acid and diterpenoid hormone metabolic pathways under salt stress. In addition, CeO2NPs enhanced α-amylase activity (by 6.55%) in vitro. The optimal tested concentration (50 mg/L) of CeO2NPs was able to improve the seed vigor, enhance the activity of α-amylase, regulate the osmotic level and endogenous hormone levels, and improve the salt tolerance of alfalfa seeds. This study demonstrates the efficacy of a simple seed treatment strategy that can improve crop stress resistance, which is of great importance for reducing agricultural costs and promoting sustainable agricultural development.

Funder

National Key Research and Development Program of China

Key Industry Innovation Chain of Shaanxi

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3