Optimizing Shade Cultivation Method and Irrigation Amount to Improve Photosynthetic Characteristics, Bean Yield, and Quality of Coffee in a Subtropical Monsoon Climate

Author:

Hao Kun,Liu Xiaogang,Wang Xiukang,Fei Liangjun,Liu Lihua,Jie Feilong,Li Yilin,Yang Qiliang,Shan Yunhui

Abstract

Reasonable water and light management technology can improve economic benefits, coffee yield, and quality. We used cluster analysis and principal component analysis to evaluate and optimize the water and light management technology with high coffee yield, quality, and economic benefits in a subtropical monsoon climate region of China. The experiment was arranged in a randomized complete block design with two factors (3 irrigation levels × 4 shade cultivation treatments) replicated four times during 2016–2017. The irrigation levels consisted of full irrigation (FI) and two deficit irrigations (DIL: 75% FI, DIS: 50% FI). The shade cultivation treatments consisted of no shade cultivation (S0) and three shade cultivation modes (SL: intercropping with four lines of coffee and one line of banana; SM: intercropping with three lines of coffee and one line of banana; SS: intercropping with two lines of coffee and one line of banana). The results showed that the effects of irrigation level and shade cultivation mode on growth, crop yield, most of the photosynthetic characteristics, and nutritional quality were significant (p < 0.05). Regression analysis showed that the leaf radiation use efficiency (RUE) showed a significant negative exponential relation or logistic-curve variation with photosynthetically active radiation (PAR). The bean yield increased with an increase of the shade degree when water was seriously deficient, whereas it first increased and then decreased with an increase of the shade degree under FI and DIL. Based on both cluster analysis and principal component analysis, the FISS treatment resulted in the highest comprehensive quality of coffee, followed by the FISM treatment; the DISS0 treatment obtained the lowest quality. Compared with the FIS0 treatment, the FISM treatment increased the 2-year average bean yield and net income by 15.0 and 28.5%, respectively, whereas the FISS treatment decreased these by 17.8 and 8.7%, respectively. To summarize, FISS treatment significantly improved the nutritional quality of coffee, and FISM treatment significantly increased the dry bean yield and economic benefits of coffee. The results of the study could provide a theoretical basis for water-saving irrigation and shade cultivation management of coffee in a subtropical monsoon climate region of China.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3