Response of leaf biomass, leaf and soil C:N:P stoichiometry characteristics to different site conditions and forest ages: a case of Pinus tabuliformis plantations in the temperate mountainous area of China

Author:

Wang Yutao,Zhang Yiming,Wang Lijiao,Jing Xin,Yu Lei,Liu Ping

Abstract

Ecological stoichiometry is an important index that reflects the element cycle and ecosystem stability. In this study, two sites (sunny and shady slopes) and five forest ages (young stage, half-mature stage, near-mature stage, mature stage, and over-mature stage) in a Pinus tabuliformis plantation were chosen to illustrate the effects of forest ages and site conditions on the biomass and stoichiometric characteristics of leaves and soils in the temperate mountainous area of China. Except for young stage, the biomass of the leaves of P. tabuliformis on sunny slopes were higher than those on shady slopes in other forest ages, the average carbon content of the leaves in sunny slopes was higher than that in shady slope, while the average total nitrogen contents and average total phosphorus contents of the leaves showed the opposite of this. The biomass of leaves increased on sunny slopes, and increased first and then decreased in shady slopes with increasing forest ages. The contents of soil total carbon (STC) and soil total nitrogen (STN) decreased with increasing soil depth, while the soil total phosphorus (STP) and soil available phosphorus (SAP) contents displayed the opposite. In addition to SAP, the average content of STC, STN, and STP in shady slopes was higher than that in sunny slopes, and the ratio was the opposite. Except for STC: STN on shady slopes, the other ratios showed a downward trend with an increase in soil depth. Excluding the topsoil, the change trend of STC : STP and STN : STP in shady slopes and sunny slopes was consistent with forest ages. The results showed that forest ages and site conditions had significant effects on leaf biomass. The biomass of the leaves is mainly limited by nitrogen. These results have important significance in improving the refinement of local forestry management of Pinus tabuliformis plantations in the temperate mountainous area of China.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3