Improved EfficientNet for corn disease identification

Author:

Cai Jitong,Pan Renyong,Lin Jianwu,Liu Jiaming,Zhang Licai,Wen Xingtian,Chen Xiaoyulong,Zhang Xin

Abstract

IntroductionCorn is one of the world's essential crops, and the presence of corn diseases significantly affects both the yield and quality of corn. Accurate identification of corn diseases in real time is crucial to increasing crop yield and improving farmers' income. However, in real-world environments, the complexity of the background, irregularity of the disease region, large intraclass variation, and small interclass variation make it difficult for most convolutional neural network models to achieve disease recognition under such conditions. Additionally, the low accuracy of existing lightweight models forces farmers to compromise between accuracy and real-time.MethodsTo address these challenges, we propose FCA-EfficientNet. Building upon EfficientNet, the fully-convolution-based coordinate attention module allows the network to acquire spatial information through convolutional structures. This enhances the network's ability to focus on disease regions while mitigating interference from complex backgrounds. Furthermore, the adaptive fusion module is employed to fuse image information from different scales, reducing interference from the background in disease recognition. Finally, through multiple experiments, we have determined the network structure that achieves optimal performance.ResultsCompared to other widely used deep learning models, this proposed model exhibits outstanding performance in terms of accuracy, precision, recall, and F1 score. Furthermore, the model has a parameter count of 3.44M and Flops of 339.74M, which is lower than most lightweight network models. We designed and implemented a corn disease recognition application and deployed the model on an Android device with an average recognition speed of 92.88ms, which meets the user's needs.DiscussionOverall, our model can accurately identify corn diseases in realistic environments, contributing to timely and effective disease prevention and control.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference36 articles.

1. Maize leaf disease classification using deep convolutional neural networks;Ahila Priyadharshini;Neural Computing Appl.,2019

2. Cd&s dataset: Handheld imagery dataset acquired under field conditions for corn disease identification and severity estimation;Ahmad,2021

3. Using a resnet50 with a kernel attention mechanism for rice disease diagnosis;Al-Gaashani;Life,2023

4. Disease classification in maize crop using bag of features and multiclass support vector machine;Aravind,2018

5. Layer norMalization;Ba,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image Recognition of Maize Pests and Diseases Based on Convolutional Neural Network Algorithm;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3