Utilization of a Sugarcane100K Single Nucleotide Polymorphisms Microarray-Derived High-Density Genetic Map in Quantitative Trait Loci Mapping and Function Role Prediction of Genes Related to Chlorophyll Content in Sugarcane

Author:

Lu Guilong,Pan Yong-Bao,Wang Zhoutao,Xu Fu,Cheng Wei,Huang Xinge,Ren Hui,Pang Chao,Que Youxiong,Xu Liping

Abstract

Chlorophyll is the most important pigment for plant photosynthesis that plays an important role in crop growth and production. In this study, the chlorophyll content trait was explored to improve sugarcane yield. Two hundred and eighty-five F1 progenies from the cross YT93-159 × ROC22 with significantly different chlorophyll contents were included as test materials. The chlorophyll content of the +1 leaves during elongation phase was measured using a SPAD-502 meter through a three-crop cycle (plant cane, first ratoon, and second ratoon). Linkage analysis was conducted on a high-density genetic map constructed based on the sugarcane 100K SNP chip. In addition, Fv/Fm, plant height, stalk diameter, brix data were collected on plant cane during the elongation and maturation phases. The results showed that the +1 leaf SPAD values, which can be used as an important reference to evaluate the growth potential of sugarcane, were significantly and positively correlated with the Fv/Fm during elongation phase, as well as with plant height, stalk diameter, and brix during maturity phase (P < 0.01). The broad sense heritability (H2) of the chlorophyll content trait was 0.66 for plant cane crop, 0.67 for first ratoon crop, and 0.73 for second ratoon crop, respectively, indicating that this trait was mainly controlled by genetic factors. Thirty-one quantitative trait loci (QTL) were detected by QTL mapping. Among them, a major QTL, qCC-R1, could account for 12.95% of phenotypic variation explained (PVE), and the other 30 minor QTLs explained 2.37–7.99% PVE. Twenty candidate genes related to chlorophyll content were identified in the QTLs plus a 200-Kb extension region within either sides, of which four were homologous genes involved in the chlorophyll synthesis process and the remaining 16 played a certain role in chlorophyll catabolic pathway, chloroplast organization, or photosynthesis. These results provide a theoretical reference for analyzing the genetic mechanism of chlorophyll synthesis and subsequent improvement of photosynthetic characteristics in sugarcane.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3