Drought responsiveness in six wheat genotypes: identification of stress resistance indicators

Author:

Guizani Asma,Askri Hend,Amenta Maria Laura,Defez Roberto,Babay Elyes,Bianco Carmen,Rapaná Nicoletta,Finetti-Sialer Mariella,Gharbi Fatma

Abstract

IntroductionWheat (Triticum aestivum L.) is among the world’s most important staple food crops. In the current climate change scenario, a better understanding of wheat response mechanisms to water stress could help to enhance its productivity in arid ecosystems.MethodsIn this study, water relations, gas exchange, membrane integrity, agronomic traits and molecular analysis were evaluated in six wheat genotypes (D117, Syndiouk, Tunisian durum7 (Td7), Utique, Mahmoudi AG3 and BT) subjected to drought-stress.Results and discussionFor all the studied genotypes, drought stress altered leaf area, chlorophyll content, stomatal density, photosynthetic rate and water-use efficiency, while the relative water content at turgor loss point (RWC0) remained stable. Changes in osmotic potential at turgor loss point (Ψπ0), bulk modulus of elasticity (Ɛmax) and stomatal regulation, differed greatly among the studied genotypes. For the drought-sensitive genotypes AG3 and BT, no significant changes were observed in Ψπ0, whereas the stomatal conductance (gs) and transpiration rate (E) decreased under stress conditions. These two varieties avoided turgor loss during drought treatment through an accurate stomatal control, resulting in a significant reduction in yield components. On the contrary, for Syndiouk, D117, Td7 and Utique genotypes, a solute accumulation and an increase in cell wall rigidity were the main mechanisms developed during drought stress. These mechanisms were efficient in enhancing soil water uptake, limiting leaf water loss and protecting cells membranes against leakage induced by oxidative damages. Furthermore, leaf soluble sugars accumulation was the major component of osmotic adjustment in drought-stressed wheat plants. The transcriptional analysis of genes involved in the final step of the ABA biosynthesis (AAO) and in the synthesis of an aquaporin (PIP2:1) revealed distinct responses to drought stress among the selected genotypes. In the resistant genotypes, PIP2:1 was significantly upregulated whereas in the sensitive ones, its expression showed only a slight induction. Conversely, the sensitive genotypes exhibited higher levels of AAO gene expression compared to the resistant genotypes. Our results suggest that drought tolerance in wheat is regulated by the interaction between the dynamics of leaf water status and stomatal behavior. Based on our findings, Syndiouk, D117, Utique and Td7, could be used in breeding programs for developing high-yielding and drought-tolerant wheat varieties.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3