No-till and nitrogen fertilizer reduction improve nitrogen translocation and productivity of spring wheat (Triticum aestivum L.) via promotion of plant transpiration

Author:

Tan Yan,Chai Qiang,Li Guang,Hu Falong,Yu Aizhong,Zhao Cai,Fan Zhilong,Yin Wen,Fan Hong

Abstract

Excessive nitrogen (N) fertilizer has threatened the survivability and sustainability of agriculture. Improving N productivity is promising to address the above issue. Therefore, the field experiment, which investigated the effect of no-till and N fertilizer reduction on water use and N productivity of spring wheat (Triticum aestivum L.), was conducted at Wuwei experimental station in northwestern China. There were two tillage practices (conventional tillage, CT; and no-till with previous plastic film mulching, NT) and three N fertilizer rates (135 kg N ha–1, N1; 180 kg N ha–1, N2; and 225 kg N ha–1, N3). The results showed that NT lowered soil evaporation (SE) by 22.4% while increasing the ratio of transpiration to evapotranspiration (T/ET) by 13.6%, compared with CT. In addition, NT improved the total N accumulation by 11.5% and enhanced N translocation (NT) quantity, rate, and contribution by a range of 6.2–23.3%. Ultimately, NT increased grain yield (GY), N partial factor productivity, and N harvest index by 13.4, 13.1, and 26.0%, respectively. Overall, N1 increased SE (13.6%) but decreased T/ET (6.1%) compared with N3. While, N2 enhanced NT quantity, rate, and contribution by a range of 6.0–15.2%. With the integration of NT, N2 achieved the same level of GY and N harvest index as N3 and promoted N partial factor productivity by 11.7%. The significant positive correlation of NT relative to T/ET and GY indicated that improving T/ET was essential for achieving higher NT. Therefore, we concluded that no-till coupled with N fertilizer rate at 180 kg N ha–1 was a preferable management option to boost the N productivity of spring wheat in arid areas.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Plant Science

Reference57 articles.

1. Fertilizer N use efficiency as influenced by interactions with other nutrients;Aulakh;Agriculture and the nitrogen cycle: Assessing the impacts of fertilizer use on food production and the environment,2004

2. The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab.;Balwinder;India. Agric. Water Manag.,2011

3. Dynamics of light and nitrogen distribution during grain filling within wheat canopy.;Bertheloot;Plant Physiol.,2008

4. A comprehensive planetary boundary-based method for the nitrogen cycle in life cycle assessment: Development and application to a tomato production case study.;Bjørn;Sci. Total Environ.,2020

5. Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China.;Chai;Agric. Water Manag.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3