Response of winter wheat genotypes to salinity stress under controlled environments

Author:

Ehtaiwesh Amal,Sunoj V. S. John,Djanaguiraman Maduraimuthu,Prasad P. V. Vara

Abstract

This study was conducted in controlled environmental conditions to systematically evaluate multi-traits responses of winter wheat (Triticum aestivum L.) genotypes to different salinity levels. Responses were assessed at the germination to early seedling stage (Experiment 1). Seeds of different genotypes (n=292) were subjected to three salinity levels (0 [control], 60, and 120 mM NaCl). Principal Component Analysis (PCA) revealed that among studied traits seedling vigor index (SVI) contributed more towards the diverse response of genotypes to salinity stress. Based on SVI, eight contrasting genotypes assumed to be tolerant (Gage, Guymon, MTS0531, and Tascosa) and susceptible (CO04W320, Carson, TX04M410211) were selected for further physio-biochemical evaluation at the booting stage (Experiment 2) and to monitor grain yield. Higher level of salinity (120 mM NaCl) exposure at the booting stage increased thylakoid membrane damage, lipid peroxidation, sugars, proline, and protein while decreasing photosynthesis, chlorophyll index, starch, and grain yield. Based on grain yield, the assumed magnitude of the genotypic response shown in Experiment 1 was not analogous in Experiment 2. This indicates the necessity of individual screening of genotypes at different sensitive growth stages for identifying true salinity-tolerant and susceptible genotypes at a particular growth stage. However, based on higher grain yield and its least percentage reduction under higher salinity, Guymon and TX04M410211 were identified as tolerant, and Gage and CO04W320 as susceptible at the booting stage, and their biparental population can be used to identify genomic regions for booting stage-specific salinity response.

Publisher

Frontiers Media SA

Reference109 articles.

1. The Effects of different levels of salinity and indole-3-acetic acid (IAA) on early growth and germination of wheat seedling;Abdoli;J. Stress Physiol. Biochem.,2013

2. Wheat growth and physiology;Acevedo,2002

3. Salt stress effects on seed germination and seedling growth of barley (Hordeum vulgare L.) genotypes;Adjel;J. Agric. Sustainabil.,2013

4. Menadione sodium bisulphite regulates physiological and biochemical responses to lessen salinity effects on wheat (Triticum aestivum L.);Akbar;Physiol. Mol. Biol. Plants,2021

5. Exogenous menadione sodium bisulphite alleviates detrimental effects of alkaline stress on wheat (Triticum aestivum L.);Akbar;Physiol. Mol. Biol. Plants,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3