Antioxidative Defense System, Hormones, and Metabolite Accumulation in Different Plant Parts of Two Contrasting Rice Cultivars as Influenced by Plant Growth Regulators Under Heat Stress

Author:

Al-Zahrani Hassan S.,Alharby Hesham F.,Fahad Shah

Abstract

We examined the metabolic, hormonal, enzymatic, and non-enzymatic responses of various plant components (leaf, root, and xylem sap) to plant growth regulators [methyl jasmonate (MeJA), ascorbic acid (Vc), brassinosteroids (Br), triazoles (Tr), alpha-tocopherol (Ve), and control] under heat stress [ambient temperature (AT), heat stress at night time (HNT), and heat stress at day (HDT)] in heat-sensitive (IR-64) and heat-tolerant (Huanghuazhan) rice cultivars under greenhouse conditions. Our results showed that heat stress altered the antioxidant activities and hormonal balance and rigorously reduced total soluble sugars, proteins, and proline, whereas increases were observed in H2O2 and Malondialdehyde (MDA) content accumulation in the plant xylem sap and leaves of both tested cultivars; however, the impact was more pronounced in IR-64. The superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), Glutathione (GSH), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) activities were higher in Huanghuazhan than in IR-64 in response to temperature stress, when compared to AT. Additionally, heat stress increased abscisic acid (ABA) levels in both rice cultivars, especially in IR-64. The highest concentrations of hormones were recorded in the roots, followed by the leaves and xylem sap, in both cultivars. HDT and HNT stresses severely reduced the concentrations of all of the cytokinin types (except for iP9G and tZ9G) and IAA in the different plant parts of rice cultivars. Moreover, HNT was more detrimental for hormone and metabolite synthesis in both cultivars. The growth regulators (especially Vc + Br + Ve + MeJA) were comparatively more effective in minimizing the hostile impact of heat stress on most of the studied traits and should be applied to obtain the optimum yield of rice in subtropical and tropical areas under changing climatic conditions.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3