Chloroplast Genomes of Two Species of Cypripedium: Expanded Genome Size and Proliferation of AT-Biased Repeat Sequences

Author:

Guo Yan-Yan,Yang Jia-Xing,Li Hong-Kun,Zhao Hu-Sheng

Abstract

The size of the chloroplast genome (plastome) of autotrophic angiosperms is generally conserved. However, the chloroplast genomes of some lineages are greatly expanded, which may render assembling these genomes from short read sequencing data more challenging. Here, we present the sequencing, assembly, and annotation of the chloroplast genomes of Cypripedium tibeticum and Cypripedium subtropicum. We de novo assembled the chloroplast genomes of the two species with a combination of short-read Illumina data and long-read PacBio data. The plastomes of the two species are characterized by expanded genome size, proliferated AT-rich repeat sequences, low GC content and gene density, as well as low substitution rates of the coding genes. The plastomes of C. tibeticum (197,815 bp) and C. subtropicum (212,668 bp) are substantially larger than those of the three species sequenced in previous studies. The plastome of C. subtropicum is the longest one of Orchidaceae to date. Despite the increase in genome size, the gene order and gene number of the plastomes are conserved, with the exception of an ∼75 kb large inversion in the large single copy (LSC) region shared by the two species. The most striking is the record-setting low GC content in C. subtropicum (28.2%). Moreover, the plastome expansion of the two species is strongly correlated with the proliferation of AT-biased non-coding regions: the non-coding content of C. subtropicum is in excess of 57%. The genus provides a typical example of plastome expansion induced by the expansion of non-coding regions. Considering the pros and cons of different sequencing technologies, we recommend hybrid assembly based on long and short reads applied to the sequencing of plastomes with AT-biased base composition.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3