Method for selecting ornamental species for different shading intensity in urban green spaces

Author:

Francini Alessandra,Toscano Stefania,Ferrante Antonio,Romano Daniela

Abstract

In urban areas, ornamental plants face different constraints, such as the shading of buildings and trees. Therefore, the selection of suitable species and their integration or combination with pre-existing plants is very important. Trees, shrubs, and herbaceous plant species must be distributed according to plant light requirements and shading intensity. Ornamental plants are classified into two groups based on their light intensity or shade tolerance: sun and shade species. To properly position the plants, especially in the immediate vicinity of buildings, it is necessary to study the projection of shadows during the year and the most critical periods, such as July and August. The position of ornamental species with different shading tolerances can be obtained by characterizing the leaf gas exchange for each species. Among the physiological parameters, the most important is the light compensation point, which is the light intensity corresponding to a net photosynthesis equal to zero. This means that the assimilation of carbon dioxide through photosynthesis is equal to the carbon dioxide emitted by respiration. This steady state represents the most critical condition for plants to endure the summer. The distribution of species inside a green area should be determined by considering the minimum light intensity that allows sufficient photosynthesis to compensate for the respiration rate. In this context, non-destructive leaf gas exchange, chlorophyll a fluorescence, and chlorophyll content can be useful tools for selecting suitable ornamental plants under diverse shading conditions.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3