Performance of the Two-Source Energy Balance (TSEB) Model as a Tool for Monitoring the Response of Durum Wheat to Drought by High-Throughput Field Phenotyping

Author:

Gómez-Candón David,Bellvert Joaquim,Royo Conxita

Abstract

The current lack of efficient methods for high throughput field phenotyping is a constraint on the goal of increasing durum wheat yields. This study illustrates a comprehensive methodology for phenotyping this crop's water use through the use of the two-source energy balance (TSEB) model employing very high resolution imagery. An unmanned aerial vehicle (UAV) equipped with multispectral and thermal cameras was used to phenotype 19 durum wheat cultivars grown under three contrasting irrigation treatments matching crop evapotranspiration levels (ETc): 100%ETc treatment meeting all crop water requirements (450 mm), 50%ETc treatment meeting half of them (285 mm), and a rainfed treatment (122 mm). Yield reductions of 18.3 and 48.0% were recorded in the 50%ETc and rainfed treatments, respectively, in comparison with the 100%ETc treatment. UAV flights were carried out during jointing (April 4th), anthesis (April 30th), and grain-filling (May 22nd). Remotely-sensed data were used to estimate: (1) plant height from a digital surface model (H, R2 = 0.95, RMSE = 0.18m), (2) leaf area index from multispectral vegetation indices (LAI, R2 = 0.78, RMSE = 0.63), and (3) actual evapotranspiration (ETa) and transpiration (T) through the TSEB model (R2 = 0.50, RMSE = 0.24 mm/h). Compared with ground measurements, the four traits estimated at grain-filling provided a good prediction of days from sowing to heading (DH, r = 0.58–0.86), to anthesis (DA, r = 0.59–0.85) and to maturity (r = 0.67–0.95), grain-filling duration (GFD, r = 0.54–0.74), plant height (r = 0.62–0.69), number of grains per spike (NGS, r = 0.41–0.64), and thousand kernel weight (TKW, r = 0.37–0.42). The best trait to estimate yield, DH, DA, and GFD was ETa at anthesis or during grain filling. Better forecasts for yield-related traits were recorded in the irrigated treatments than in the rainfed one. These results show a promising perspective in the use of energy balance models for the phenotyping of large numbers of durum wheat genotypes under Mediterranean conditions.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference92 articles.

1. Agisoft (Agisoft PhotoScan User Manual Professional Edition) (2020)Version 1.6.2. Agisoft LLC2020

2. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)–Model;Allen;J. Irrig. Drain. Eng,2007

3. Relationship between growth traits and spectral reflectance indices in durum wheat;Aparicio;Crop Sci,2002

4. Spectral vegetation indices as non-destructive tools for determining durum wheat yield;Aparicio;Agron. J.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3