From comfort zone to mortality: Sequence of physiological stress thresholds in Robinia pseudoacacia seedlings during progressive drought

Author:

Wang Xia,Fan Yanli,Zhang Congcong,Zhao Yihong,Du Guangyuan,Li Min,Si Bingcheng

Abstract

IntroductionParameterizing the process of trees from the comfort zone to mortality during progressive drought is important for, but is not well represented in, vegetation models, given the lack of appropriate indices to gauge the response of trees to droughts. The objective of this study was to determine reliable and readily available tree drought stressindices and the thresholds at which droughts activate important physiological responses.MethodsWe analyzed the changes in the transpiration (T), stomatal conductance, xylem conductance, and leaf health status due to a decrease in soil water availability (SWA), predawn xylem water potential (ψpd), and midday xylem water potential (ψmd) in Robinia pseudoacacia seedlings during progressive drought.ResultsThe results showed that ψmd was a better indicator of drought stress than SWA and ψpd, because ψmd was more closely related to the physiological response (defoliation and xylem embolization) during severe drought and could be measured more conveniently. We derived the following five stress levels from the observed responses to decreasing ψmd: comfort zone (ψmd > -0.9 MPa), wherein transpiration and stomatal conductance are not limited by SWA; moderate drought stress (-0.9 to -1.75 MPa), wherein transpiration and stomatal conductance are limited by drought; high drought stress (-1.75 to -2.59 MPa), wherein transpiration decreases significantly (T< 10%) and stomata closes completely; severe drought stress (-2.59 to -4.02 MPa), wherein transpiration ceases (T< 0.1%) and leaf shedding orwilting is > 50%; and extreme drought stress (< -4.02 MPa), leading to tree mortality due to xylem hydraulic failure.DiscussionTo our knowledge, our scheme is the first to outline the quantitative thresholds for the downregulation of physiological processes in R. pseudoacacia during drought, therefore, can be used to synthesize valuable information for process-based vegetation models.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3