Specific Plant Mycorrhizal Responses Are Linked to Mycorrhizal Fungal Species Interactions

Author:

Guo Xin,Wang Ping,Wang Xinjie,Li Yaoming,Ji Baoming

Abstract

Effects of arbuscular mycorrhizal fungi (AMF) on plants span the continuum from mutualism to parasitism due to the plant–AMF specificity, which obscures the utilization of AMF in the restoration of degraded lands. Caragana korshinskii, Hedysarum laeve, Caragana microphylla, and Poa annua are the most frequently used plants for revegetation in Kubuqi Desert, China, and the influence of AMF on their re-establishment remains to be explored further. Herein, using a greenhouse experiment, we tested the plant–AMF feedbacks between the four plant species and their conspecific or heterospecific AMF, retrieved from their rhizosphere in the Kubuqi Desert. AMF showed beneficial effects on plant growth for all these plant-AMF pairs. Generally, AMF increased the biomass of C. korshinskii, H. laeve, C. microphylla, and P. annua by 97.6, 50.6, 46.5, and 381.1%, respectively, relative to control. In addition, the AMF-plant specificity was detected. P. annua grew best, but C. microphylla grew worst with conspecific AMF communities. AMF community from P. annua showed the largest beneficial effect on all the plants (with biomass increased by 63.9–734.4%), while the AMF community from C. microphylla showed the least beneficial effect on all the plants (with biomass increased by 9.9–59.1%), except for P. annua (a 292.4% increase in biomass). The magnitude of AMF effects on plant growth was negatively correlated with the complexity of the corresponding AMF co-occurrence networks. Overall, this study suggests that AMF effects on plant growth vary due to plant-AMF specificity. We also observed the broad-spectrum benefits of the native AMF from P. annua, which indicates its potential utilization in the restoration of the desert vegetation.

Funder

National Natural Science Foundation of China

Special Fund for Forest Scientific Research in the Public Welfare

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3