Optimizing corn silage quality during hot summer conditions of the tropics: investigating the effect of additives on in-silo fermentation characteristics, nutrient profiles, digestibility and post-ensiling stability

Author:

Khan Nazir Ahmad,Khan Nadar,Tang Shaoxun,Tan Zhiliang

Abstract

Corn crop grown and ensiled at high temperature have lower water soluble carbohydrates (WSC), epiphytic lactic acid bacteria (LAB) population, lactic acid concentration, fermentation quality and aerobic stability. This study systematically investigated the effects of heterofermentative LAB (hetLAB), homofermentative LAB (homLAB), molasses and their mixture (MIX) on in-silo fermentation characteristics, chemical profiles, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate subfractions, in vitro digestibility (DMD), microbial count, and post-ensiling aerobic stability of whole crop corn silage during hot summer (30 to 45°C) condition. Corn hybrids (P30K08 and DK6789) were ensiled at targeted dry matter (DM) of 330 g/kg for 0, 3, 7, 21, and 150 days in 3 L silos, without additive (CCS) or treated with hetLAB (4×106 cfu/g Lactobacillus buchneri), homLAB (1×106 cfu/g of L. plantarum), molasses (3% of fresh forage) or MIX (half of individual doses of homLAB, hetLAB and molasses) additives. The CCS, homLAB, hetLAB, molasses, or MIX treated chopped material of each hybrid were ensiled in 16 replicate silos at a density of 260 kg of DM/m3. Compared to CCS, the additives significantly improved silage nutritional and fermentation quality, DM digestibility (in vitro), count of LAB, DM recovery and aerobic stability, and decreased counts of yeast and mold. Among the inoculants, the homLAB and MIX inoculated silages had greatest improvement in fermentation quality and nutritional value. The homLAB produced corn silage with the highest (P < 0.05) content of lactic acid, and soluble carbohydrates, and lowest contents of acetic acid, NH3-N and pH, demonstrating desirable and restricted in silo fermentation. On the other hand, the hetLAB inoculated silages had the greatest (P < 0.05) value of acetic acids, highlighting greater aerobic stability. Interestingly, the MIX silages followed the hetLAB in acetic acid value and homLAB in lactic acid value. Notably, without additive stable pH was not achieved during 21 days, with application of molasses, hetLAB and the MIX inoculants stable pH was achieved during 7 days, and with homLAB stable pH was achieved during the first 3 days of ensiling. The greatest numbers of viable LAB were recorded in homLAB (8.13 log cfu/g) and MIX (7.89 log cfu/g) inoculated silages, while the lowest for CCS (6.29 log cfu/g). The lowest yeast (1.48 log cfu/g) and mold (0.22 log cfu/g) were recorded for hetLAB inoculated silage. The greatest (P < 0.05) DM recovery was recorded for hetLAB (97.3%) and MIX (96.9%), and the lowest for the control silage (92.9%). All additives significantly improved the aerobic stability of corn silage, and the greatest value of >72 h was recorded for hetLAB and MIX inoculats, and the lowest for CSC (25 h). In conclusion, additives application can improve fermentation quality, nutritional value, DM recovery and aerobic stability of whole crop corn silage under hot summer conditions of the tropics. The MIX inoculant showed potential to improve in-silo fermentation, and aerobic stability at the same time, however, further investigation are required, particularly with respect of dose rate.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3