Bacillus halotolerans KKD1 induces physiological, metabolic and molecular reprogramming in wheat under saline condition

Author:

Wu Xiaohui,Fan Yaning,Wang Ruoyi,Zhao Qian,Ali Qurban,Wu Huijun,Gu Qin,Borriss Rainer,Xie Yongli,Gao Xuewen

Abstract

Salt stress decreases plant growth and is a major threat to crop yields worldwide. The present study aimed to alleviate salt stress in plants by inoculation with halophilic plant growth-promoting rhizobacteria (PGPR) isolated from an extreme environment in the Qinghai–Tibetan Plateau. Wheat plants inoculated with Bacillus halotolerans KKD1 showed increased seedling morphological parameters and physiological indexes. The expression of wheat genes directly involved in plant growth was upregulated in the presence of KKD1, as shown by real-time quantitative PCR (RT-qPCR) analysis. The metabolism of phytohormones, such as 6-benzylaminopurine and gibberellic acid were also enhanced. Mining of the KKD1 genome corroborated its potential plant growth promotion (PGP) and biocontrol properties. Moreover, KKD1 was able to support plant growth under salt stress by inducing a stress response in wheat by modulating phytohormone levels, regulating lipid peroxidation, accumulating betaine, and excluding Na+. In addition, KKD1 positively affected the soil nitrogen content, soil phosphorus content and soil pH. Our findings indicated that KKD1 is a promising candidate for encouraging wheat plant growth under saline conditions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3