Optimization of culture medium for in vitro germination and storage conditions of Exochorda racemosa pollen

Author:

Jia Wenqing,Wang Yanli,Mi Zhaorong,Wang Zheng,He Songlin,Kong Dezheng

Abstract

Pollen morphology, pollen vigor, and long-term pollen storage are critical for plant cross-breeding and genetic improvement of Exochorda racemosa. We developed a protocol for viability determination and storage of E. racemosa pollen for breeding new varieties. The medium components for E. racemosa pollen germination was optimized by using an Orthogonal Assay Test Strategy (OATS). The germination rates of E. racemosa pollen were investigated after storing at different temperatures and different storage periods. The size of E. racemosa pollen was medium with three germination ditches, and the sculptural type of pollen was striate. Red ink and 2,3,5-triphenyl tetrazolium chloride (TTC) can effectively distinguish viable pollen from the unviable pollen of E. racemosa. The most suitable medium (CK2) for E. racemosa was composed of 150 g· L–1 sucrose, 100 mg·L–1 boric acid, 150 mg· L–1 Ca(NO3)2 and 50 mg· L–1 GA3. Low-temperature stress produced the greater inhibition of pollen tube growth compared with high-temperature conditions. The CK2 medium at pH 6.5 resulted in the highest pollen germination rate and most extended pollen tube length. The optimal temperature for storage of dried pollen was –80°C (P < 0.01), and the germination rate was 53.60% after storage for 390 days. Thawing in a 35°C water bath produced the best viability of E. racemosa pollen after storage at –20°C and –80°C. The short-term storage of E. racemosa fresh pollen at 4°C was better than that at –20°C and –80°C (P < 0.01). It is possible to evaluate pollen quality and store pollen grains for E. racemosa by the parameters defined in this study.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3