Crop resilience via inter-plant spacing brings to the fore the productive ideotype

Author:

Tokatlidis Ioannis

Abstract

Natural selection favors the competitive ideotype, enabling native plants to survive in the face of intense competition. The productive ideotype is the goal of artificial selection to achieve high crop yields via the efficient use of resources in a self-competition regime. When breeding is established under inter-genotypic competition, the competitive ideotype dominates and may fictitiously become selectable. The productive ideotype becomes selectable at the nil-competition regime, where widely spaced individuals prevent plant-to-plant interference for any input. Principal reasons bring to the fore the productive ideotype that combines low competitiveness and improved plant yield efficiency. Crop spacing via the productive ideotype is mandated to alleviate the varying optimum density and ensure efficient use of resources inter-seasonally, cope with intra-field variation and optimize resource use, compensate for missing plants and promote stability, counteract unpredictable stresses and offer a buffer against environmental diversity, and adopt low-input agriculture to conserve natural resources and the environment. For breeding toward the productive ideotype, nil-competition is the due condition to overcome the confounding effects of competition, maximize phenotypic differentiation and facilitate selection from an early segregating generation, optimize heritability due to moderated environmental variance and experimental designs that sample spatial heterogeneity, apply high selection pressure focusing exclusively on the targeted genotype, and avoid the risk of bias selection or loss of desired genotypes due to proximity to empty hills. The view of a modern crop variety composed of genotype(s) belonging to the productive ideotype is a viable option to reach crop resilience serving sustainability in enormously fluctuating agroecosystems.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3