Transcriptomic analysis of humic acid in relieving the inhibitory effect of high nitrogen on soybean nodulation

Author:

Zhang Wenhua,Li Jia,Li Hongya,Zhang Dongdong,Zhu Baocheng,Yuan Hongli,Gao Tongguo

Abstract

IntroductionNitrogen fertilizer intake promotes soybean growth before the formation of nodules, but excess nitrogen has an inhibitory effect on soybean nodulation. It is important to balance nitrogen levels to meet both growth and nodulation needs.Methodsthe nitrogen level suitable for soybean growth and nodulation was studied, the role of humic acid (HA) in alleviating the inhibition of high nitrogen on soybean nodulation was analyzed, and transcriptomic analysis was performed to understand its mechanism.ResultsThe results showed that a lower level of nitrogen with 36.4 mg urea per pot could increase the number of nodules of soybean, and a higher level of nitrogen with 145.9 mg urea per pot (U4 group) had the best growth indicators but inhibited nodulation significantly. HA relieved the inhibitory effect at high nitrogen level, and the number of nodules increased by 122.1% when 1.29 g HA was added (H2 group) compared with the U4 group. The transcriptome analysis was subsequently performed on the H2 and U4 groups, showing that there were 2995 differentially expressed genes (DEGs) on the 25th day, accounting for 6.678% of the total annotated genes (44,848) under the test conditions. These DEGs were enriched in mitogen-activated protein kinase signaling pathway-plant, flavonoid biosynthesis, and plant hormone signal transduction based on the –log10 (Padjusted) value in the Kyoto Encyclopedia of Genes and Genomes pathway (KEGG).DiscussionHA balanced the nitrogen level through the above pathways in soybean planting to control the number of nodules.

Funder

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Hebei Provincial Key Research Projects

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3