Exploring Soybean Flower and Pod Variation Patterns During Reproductive Period Based on Fusion Deep Learning

Author:

Zhu Rongsheng,Wang Xueying,Yan Zhuangzhuang,Qiao Yinglin,Tian Huilin,Hu Zhenbang,Zhang Zhanguo,Li Yang,Zhao Hongjie,Xin Dawei,Chen Qingshan

Abstract

The soybean flower and the pod drop are important factors in soybean yield, and the use of computer vision techniques to obtain the phenotypes of flowers and pods in bulk, as well as in a quick and accurate manner, is a key aspect of the study of the soybean flower and pod drop rate (PDR). This paper compared a variety of deep learning algorithms for identifying and counting soybean flowers and pods, and found that the Faster R-CNN model had the best performance. Furthermore, the Faster R-CNN model was further improved and optimized based on the characteristics of soybean flowers and pods. The accuracy of the final model for identifying flowers and pods was increased to 94.36 and 91%, respectively. Afterward, a fusion model for soybean flower and pod recognition and counting was proposed based on the Faster R-CNN model, where the coefficient of determinationR2 between counts of soybean flowers and pods by the fusion model and manual counts reached 0.965 and 0.98, respectively. The above results show that the fusion model is a robust recognition and counting algorithm that can reduce labor intensity and improve efficiency. Its application will greatly facilitate the study of the variable patterns of soybean flowers and pods during the reproductive period. Finally, based on the fusion model, we explored the variable patterns of soybean flowers and pods during the reproductive period, the spatial distribution patterns of soybean flowers and pods, and soybean flower and pod drop patterns.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3