Training set designs for prediction of yield and moisture of maize test cross hybrids with unreplicated trials

Author:

Terraillon Jérôme,Roeber Frank K.,Flachenecker Christian,Frisch Matthias

Abstract

Unreplicated field trials and genomic prediction are both used to enhance the efficiency in early selection stages of a hybrid maize breeding program. No results are available on the optimal experimental design when combining both approaches. Our objectives were to investigate the effect of the training set design on the accuracy of genomic prediction in unreplicated maize test crosses. We carried out a cross validation study on basis of an experimental data set consisting of 1436 hybrids evaluated for yield and moisture for which genotyping information of 461 SNP markers were available. Training set designs of different size, implementing within environment prediction, within year prediction, across year prediction, and combinations of data sources across years and environments were compared with respect to their prediction accuracy. Across year prediction did not reach prediction accuracies that are useful for genomic selection. Within year prediction across environments provided useful correlations between observed and predicted breeding values. The prediction accuracies did not improve when adding to the training set data from previous years. We conclude that using all data available from unreplicated tests of the current breeding cycle provides a good accuracy of predicting test crosses, whereas adding data from previous breeding cycles, in which the genotypes are less related to the tested material, has only limited value for increasing the prediction accuracy.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multimodal Gesture Recognition with Spatio-Temporal Features Fusion Based on YOLOv5 and MediaPipe;International Journal of Pattern Recognition and Artificial Intelligence;2024-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3