Fine Mapping of the “black” Peel Color in Pomegranate (Punica granatum L.) Strongly Suggests That a Mutation in the Anthocyanidin Reductase (ANR) Gene Is Responsible for the Trait

Author:

Trainin Taly,Harel-Beja Rotem,Bar-Ya’akov Irit,Ben-Simhon Zohar,Yahalomi Rami,Borochov-Neori Hamutal,Ophir Ron,Sherman Amir,Doron-Faigenboim Adi,Holland Doron

Abstract

Anthocyanins are important dietary and health-promoting substances present in high quantities in the peel and arils of the pomegranate (Punica granatum L.) fruit. Yet, there is a high variation in the content of anthocyanin among different pomegranate varieties. The ‘Black’ pomegranate variety (P.G.127-28) found in Israel contains exceptionally high levels of anthocyanins in its fruit peel which can reach up to two orders of magnitude higher content as compared to that of other pomegranate varieties’ peel anthocyanins. Biochemical analysis reveals that delphinidin is highly abundant in the peel of ‘Black’ variety. The pattern of anthocyanin accumulation in the fruit peel during fruit development of ‘Black’ variety differs from that of other pomegranates. High anthocyanin levels are maintained during all developmental stages. Moreover, the accumulation of anthocyanin in the fruit peel of ‘Black’ variety is not dependent on light. Genetic analysis of an F2 population segregating for the “black” phenotype reveals that it is determined by a single recessive gene. Genetic mapping of the F2 population using single nucleotide polymorphism (SNP) markers identified few markers tightly linked to the “black” phenotype. Recombination analysis of the F2 population and F3 populations narrowed the “black” trait to an area of 178.5 kb on the draft genome sequence of pomegranate cv. ‘Dabenzi.’ A putative anthocyanidin reductase (ANR) gene is located in this area. Only pomegranate varieties displaying the “black” trait carry a base pair deletion toward the end of the gene, causing a frame shift resulting in a shorter protein. We propose that this mutation in the ANR gene is responsible for the different anthocyanin composition and high anthocyanin levels of the “black” trait in pomegranate.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3