Chromosome-Level Genome Assembly and HazelOmics Database Construction Provides Insights Into Unsaturated Fatty Acid Synthesis and Cold Resistance in Hazelnut (Corylus heterophylla)

Author:

Liu Jianfeng,Wei Heng,Zhang Xingzheng,He Hongli,Cheng Yunqing,Wang Daoming

Abstract

Corylus heterophylla (2n = 22) is the most widely distributed, unique, and economically important nut species in China. Chromosome-level genomes of C. avellana, C. heterophylla, and C. mandshurica have been published in 2021, but a satisfactory hazelnut genome database is absent. Northeast China is the main distribution and cultivation area of C. heterophylla, and the mechanism underlying the adaptation of C. heterophylla to extremely low temperature in this area remains unclear. Using single-molecule real-time sequencing and the chromosomal conformational capture (Hi-C) assisted genome assembly strategy, we obtained a high-quality chromosome-scale genome sequence of C. heterophylla, with a total length of 343 Mb and scaffold N50 of 32.88 Mb. A total of 94.72% of the test genes from the assembled genome could be aligned to the Embryophyta_odb9 database. In total, 22,319 protein-coding genes were predicted, and 21,056 (94.34%) were annotated in the assembled genome. A HazelOmics online database (HOD) containing the assembled genome, gene-coding sequences, protein sequences, and various types of annotation information was constructed. This database has a user-friendly and straightforward interface. In total, 439 contracted genes and 3,810 expanded genes were identified through genome evolution analysis, and 17 expanded genes were significantly enriched in the unsaturated fatty acid biosynthesis pathway (ko01040). Transcriptome analysis results showed that FAD (Cor0058010.1), SAD (Cor0141290.1), and KAT (Cor0122500.1) with high expression abundance were upregulated at the ovule maturity stage. We deduced that the expansion of these genes may promote high unsaturated fatty acid content in the kernels and improve the adaptability of C. heterophylla to the cold climate of Northeast China. The reference genome and database will be beneficial for future molecular breeding and gene function studies in this nut species, as well as for evolutionary research on species of the order Fagales.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3