Changes in Root–Shoot Allometric Relations in Alpine Norway Spruce Trees After Strip Cutting

Author:

Nikolova Petia Simeonova,Geyer Jan,Brang Peter,Cherubini Paolo,Zimmermann Stephan,Gärtner Holger

Abstract

Silvicultural interventions such as strip cuttings can change the resource availability of the edge trees. This may alter tree allometry, as light regime, water, and nutrient availability can change at the forest edge. Increased root growth may optimize resource uptake and/or enhance tree anchorage to withstand the altered wind regime. However, little is known about the patterns of the root–shoot allometric responses to strip cuttings. In three alpine stands differing in climate, site productivity, and stand characteristics, we selected 71 Norway spruce trees and took increment cores from stems, root collars, and main roots. This enabled us to study changes in the long-term root-stem allometry for 46 years and short-term allometric responses to intervention. The effects of cutting were compared between edge trees and trees from the stand interior in 10 years before and after the intervention. The long-term allocation to roots increased with stem diameter, with the strongest effects on the regularly managed stand with the tallest and largest trees. These results support the allometric biomass partitioning theory, which postulates resource allocation patterns between different plant organs to depend on plant size. Strip cutting on north-facing slopes boosted edge-tree growth in all plant compartments and enhanced allocation to roots. This change in allometry started 2 years after cutting but disappeared 7–8 years later. In the post-cutting period, the highest root–shoot increase was observed in the small trees independent of the site. This indicates the change in growing conditions to have the strongest effects in formerly suppressed trees. Thus, the effect of such acclimation on the wind firmness of subdominant spruce trees is a question with high importance for optimizing cutting layouts in lowering post-cutting vulnerability to disturbance. The results from this case study contribute to a better understanding of the structural acclimation of spruce trees from high-elevation forests to new forest edges. However, for a more mechanistic understanding of environmental drivers, further analyses of tree-ring stable isotopes are recommended.

Funder

Swiss Federal Institute for Forest, Snow and Landscape Research

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3