Enhanced wedelolactone content in in vitro-raised genetically uniform Wedelia chinensis under the influence of CuSO4

Author:

Swami Ravi Kant,Nimker Shwetanjali,Narula Alka,Farooqi Humaira

Abstract

In the present study, we addressed the imperative for potent anticancer agents through Wedelia chinensis, a medicinal plant abundant in the robust antihepatotoxic and antitumor compound wedelolactone. Hindrances in conventional propagation methods due to cross-pollination and habitat degradation prompted us to pioneer in vitro rapid multiplication using plant tissue culture. Optimal outcomes were attained employing Murashige and Skoog (MS) medium supplemented with Indole-3-butyric acid (IBA) (0.5 mg/L) and Kinetin (KN) (5.0 mg/L), yielding 97.67% shoot regeneration and 81.67% rooting from nodal explants. Transplanted plantlets exhibited a 92% survival rate. We established a wedelolactone extraction protocol using toluene:ethyl acetate:formic acid (5:4:1) for High-performance thin-layer chromatography (HPTLC) analysis, trailblazing wedelolactone quantification and 2C DNA analysis in W. chinensis via flow cytometry. Experiments under heavy metal stress with CuSO4 unveiled physiological responses, with peak wedelolactone content [193.90 μg/g dry weight (dw)] in vitro at 75 μM CuSO4, surpassing in vivo levels (89.95 μg/g dw) by 116%. By pioneering successful in vitro rapid multiplication and enhanced wedelolactone content, we bridge a critical gap in the conservation and production of this medicinal plant. Our findings not only offer a sustainable means of propagation but also present a viable strategy for elevating the yield of potent bioactive molecules like wedelolactone, holding immense promise for the development of novel therapeutic interventions and addressing the pressing healthcare challenges of our time.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference77 articles.

1. Kinetin is the most effective cytokinin on shoot multiplication from cucumber;Abu-Romman;J. Agric. Sci.,2015

2. Thin films of liquid media for heterotrophic growth and storage organ development: turmeric (Curcuma longa) as a model plant;Adelberg;HortScience,2006

3. Simultaneous shoot regeneration and rhizogenesis of Wedelia chinensis for in vitro clonal propagation;Agarwala;Am. J. Sustain. Agric.,2010

4. Plant regeneration through somatic embryogenesis and genome size analysis of coriandrum sativum L;Ali;Protoplasma,2017

5. In vitro propagation and secondary metabolites production in wild germander(Teucrium polium L.);Al-Qudah;Vitr. Cell. Dev. Biol. - Plant,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3