Effect of Drought on Bean Yield Is Mediated by Intraspecific Variation in Crop Mixtures

Author:

Singh Akanksha,Lehner Inea,Schöb Christian

Abstract

Increasing plant diversity in agricultural systems provides promising solutions for sustainably increasing crop yield. It remains unclear; however, how plant–plant interactions in diverse systems are mediated by plant genetic variation. We conducted a greenhouse experiment in which we grew three varieties of common beans with three companion plant species (chickpeas, sorghum, and sunflower) in different combinations (crop mixtures, bean cultivar mixtures, and monocultures), with and without drought stress. We hypothesized that under drought stress, the effect of companion plant species on bean yield would be mediated by the drought tolerance potential of the species. We further hypothesized that this effect would vary across different bean cultivars. Overall, we show that the effect of companion plant species on bean yield was not influenced by drought stress; instead, it was dependent on the identity of the bean variety. This could partially be explained by variation in growth rate between bean varieties, where the fastest growing variety recorded the highest yield increase in plant mixtures. The effect of companion plant species on chickpea biomass, however, was potentially influenced by chickpea drought tolerance potential; chickpea biomass was recorded to be higher in plant mixtures than in its monoculture under drought conditions. Our study highlights that to develop plant mixtures, it is not only important to consider the functional traits of the interacting plant species, but also those of the different plant varieties. We further suggest that stress tolerance can be a useful trait for initial selection of plant varieties when developing crop mixtures.

Funder

ETH Zurich Foundation

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3