Herbaceous peony PlACLB2 positively regulates red petal formation by promoting anthocyanin accumulation

Author:

Luan Yuting,Chen Zijie,Wang Xin,Zhang Hechen,Tao Jun,Zhao Daqiu

Abstract

ATP-citrate lyase (ACL) gene catalyzes the formation of acetyl-CoA to provide intermediate precursors for many secondary metabolites, and also plays an important role in anthocyanin biosynthesis of plants. Herbaceous peony (Paeonia lactiflora Pall.) is an international cut flower known for its rich flower colors, however, the function of the ACL gene in flower color regulation is still unclear. Here, double-colored P. lactiflora ‘Hebao Jinlian’ were used to study the molecular mechanism of red petal, and acetyl-CoA and anthocyanin biosynthesis related PlACLB2, PlCHS, PlDFR, PlANS, and PlbHLH1 genes were initially found to highly expressed in the red outer-petals. The expression pattern of PlACLB2 was consistent with the spatial accumulation of anthocyanins. The correlation analysis of PlACLB2 expression pattern, acetyl-CoA content, and anthocyanin accumulation revealed that PlACLB2 was positively correlated with the acetyl-CoA and anthocyanin contents with correlation coefficients of 0.82 and 0.80. Moreover, multiple sequence alignment identified two typical conserved domains in PlACLB2, and phylogenetic analysis clustered PlACLB2 into the ACLB clade. PlACLB2 was localized in the nucleus and cytoplasm. On the one hand, silencing PlACLB2 in P. lactiflora red outer-petal resulted in lighter petal color and decreased acetyl-CoA accumulation, and quantitative analysis detected that PlACLB2-silenced petals lost more anthocyanins than the control groups with a decrease of 31.0%, and the main pigment component cyanidin-3,5-O-diglucoside was reduced by 31.9%. On the other hand, overexpression of PlACLB2 significantly promoted red coloration, acetyl-CoA content, and anthocyanin accumulation in tobacco flowers. These results demonstrated that PlACLB2 promoted anthocyanin accumulation by increasing the abundance of its precursor substrate acetyl-CoA, thereby regulating the formation of the red petals in P. lactiflora.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3