N6-methyladenosine (m6A) RNA modification as a metabolic switch between plant cell survival and death in leaf senescence

Author:

Rudy Elżbieta,Grabsztunowicz Magda,Arasimowicz-Jelonek Magdalena,Tanwar Umesh Kumar,Maciorowska Julia,Sobieszczuk-Nowicka Ewa

Abstract

Crop losses caused by climate change and various (a)biotic stressors negatively affect agriculture and crop production. Therefore, it is vital to develop a proper understanding of the complex response(s) to (a)biotic stresses and delineate them for each crop plant as a means to enable translational research. In plants, the improvement of crop quality by m6A editing is believed to be a promising strategy. As a reaction to environmental changes, m6A modification showed a high degree of sensitivity and complexity. We investigated differences in gene medleys between dark-induced leaf senescence (DILS) and developmental leaf senescence in barley, including inter alia RNA modifications active in DILS. The identified upregulated genes in DILS include RNA methyltransferases of different RNA types, embracing enzymes modifying mRNA, tRNA, and rRNA. We have defined a decisive moment in the DILS model which determines the point of no return, but the mechanism of its control is yet to be uncovered. This indicates the possibility of an unknown additional switch between cell survival and cell death. Discoveries of m6A RNA modification changes in certain RNA species in different stages of leaf senescence may uncover the role of such modifications in metabolic reprogramming. Nonetheless, there is no such data about the process of leaf senescence in plants. In this scope, the prospect of finding connections between the process of senescence and m6A modification of RNA in plants seems to be compelling.

Funder

Narodowym Centrum Nauki

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3