Pest recognition based on multi-image feature localization and adaptive filtering fusion

Author:

Chen Yanan,Chen Miao,Guo Minghui,Wang Jianji,Zheng Nanning

Abstract

Accurate recognition of pest categories is crucial for effective pest control. Due to issues such as the large variation in pest appearance, low data quality, and complex real-world environments, pest recognition poses challenges in practical applications. At present, many models have made great efforts on the real scene dataset IP102, but the highest recognition accuracy is only 75%. To improve pest recognition in practice, this paper proposes a multi-image fusion recognition method. Considering that farmers have easy access to data, the method performs fusion recognition on multiple images of the same pest instead of the conventional single image. Specifically, the method first uses convolutional neural network (CNN) to extract feature maps from these images. Then, an effective feature localization module (EFLM) captures the feature maps outputted by all blocks of the last convolutional stage of the CNN, marks the regions with large activation values as pest locations, and then integrates and crops them to obtain the localized features. Next, the adaptive filtering fusion module (AFFM) learns gate masks and selection masks for these features to eliminate interference from useless information, and uses the attention mechanism to select beneficial features for fusion. Finally, the classifier categorizes the fused features and the soft voting (SV) module integrates these results to obtain the final pest category. The principle of the model is activation value localization, feature filtering and fusion, and voting integration. The experimental results indicate that the proposed method can train high-performance feature extractors and classifiers, achieving recognition accuracy of 73.9%, 99.8%, and 99.7% on IP102, D0, and ETP, respectively, surpassing most single models. The results also show that thanks to the positive role of each module, the accuracy of multi-image fusion recognition reaches the state-of-the-art level of 96.1%, 100%, and 100% on IP102, D0, and ETP using 5, 2, and 2 images, respectively, which meets the requirements of practical applications. Additionally, we have developed a web application that applies our research findings in practice to assist farmers in reliable pest identification and drive the advancement of smart agriculture.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3