Using Combined Methods of Genetic Mapping and Nanopore-Based Sequencing Technology to Analyze the Insertion Positions of G10evo-EPSPS and Cry1Ab/Cry2Aj Transgenes in Maize

Author:

Peng Cheng,Mei Yingting,Ding Lin,Wang Xiaofu,Chen Xiaoyun,Wang Junmin,Xu Junfeng

Abstract

The insertion position of the exogenous fragment sequence in a genetically modified organism (GMO) is important for the safety assessment and labeling of GMOs. SK12-5 is a newly developed transgenic maize line transformed with two trait genes [i.e., G10evo-5-enolpyrul-shikimate-3-phosphate synthase (EPSPS) and Cry1Ab/Cry2Aj] that was recently approved for commercial use in China. In this study, we tried to determine the insertion position of the exogenous fragment for SK12-5. The transgene–host left border and right border integration junctions were obtained from SK12-5 genomic DNA by using the thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR) and next-generation Illumina sequencing technology. However, a Basic Local Alignment Search Tool (BLAST) analysis revealed that the flanking sequences in the maize genome are unspecific and that the insertion position is located in a repetitive sequence area in the maize genome. To locate the fine-scale insertion position in SK12-5, we combined the methods of genetic mapping and nanopore-based sequencing technology. From a classical bulked-segregant analysis (BSA), the insertion position in SK12-5 was mapped onto Bin9.03 of chromosome 9 between the simple sequence repeat (SSR) markers umc2337 and umc1743 (26,822,048–100,724,531 bp). The nanopore sequencing results uncovered 10 reads for which one end was mapped onto the vector and the other end was mapped onto the maize genome. These observations indicated that the exogenous T-DNA fragments were putatively integrated at the position from 82,329,568 to 82,379,296 bp of chromosome 9 in the transgenic maize SK12-5. This study is helpful for the safety assessment of the novel transgenic maize SK12-5 and shows that the combined method of genetic mapping and the nanopore-based sequencing technology will be a useful approach for identifying the insertion positions of transgenic sequences in other GM plants with relatively large and complex genomes.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3