A scheduling route planning algorithm based on the dynamic genetic algorithm with ant colony binary iterative optimization for unmanned aerial vehicle spraying in multiple tea fields

Author:

Liu Yangyang,Zhang Pengyang,Ru Yu,Wu Delin,Wang Shunli,Yin Niuniu,Meng Fansheng,Liu Zhongcheng

Abstract

The complex environments and weak infrastructure constructions of hilly mountainous areas complicate the effective path planning for plant protection operations. Therefore, with the aim of improving the current status of complicated tea plant protections in hills and slopes, an unmanned aerial vehicle (UAV) multi-tea field plant protection route planning algorithm is developed in this paper and integrated with a full-coverage spraying route method for a single region. By optimizing the crossover and mutation operators of the genetic algorithm (GA), the crossover and mutation probabilities are automatically adjusted with the individual fitness and a dynamic genetic algorithm (DGA) is proposed. The iteration period and reinforcement concepts are then introduced in the pheromone update rule of the ant colony optimization (ACO) to improve the convergence accuracy and global optimization capability, and an ant colony binary iteration optimization (ACBIO) is proposed. Serial fusion is subsequently employed on the two algorithms to optimize the route planning for multi-regional operations. Simulation tests reveal that the dynamic genetic algorithm with ant colony binary iterative optimization (DGA-ACBIO) proposed in this study shortens the optimal flight range by 715.8 m, 428.3 m, 589 m, and 287.6 m compared to the dynamic genetic algorithm, ant colony binary iterative algorithm, artificial fish swarm algorithm (AFSA) and particle swarm optimization (PSO), respectively, for multiple tea field scheduling route planning. Moreover, the search time is reduced by more than half compared to other bionic algorithms. The proposed algorithm maintains advantages in performance and stability when solving standard traveling salesman problems with more complex objectives, as well as the planning accuracy and search speed. In this paper, the research on the planning algorithm of plant protection route for multi-tea field scheduling helps to shorten the inter-regional scheduling range and thus reduces the cost of plant protection.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3