Genome-wide association study of Verticillium longisporum resistance in Brassica genotypes

Author:

Wang Yixiao,Fredua-Agyeman Rudolph,Yu Zhiyu,Hwang Sheau-Fang,Strelkov Stephen E.

Abstract

Verticillium stripe, caused by Verticillium longisporum, presents an emerging threat to Canadian canola (Brassica napus). Initially detected in Manitoba in 2014, the presence of this pathogen has since been confirmed across western Canada. Infections by V. longisporum can result in yield losses of up to 50%, which is a cause for concern given the susceptibility of most commercial Canadian canola cultivars. The objective of this study was to screen a collection of 211 Brassica genotypes for their reactions to V. longisporum, and to use genome-wide association study (GWAS) to identify single nucleotide polymorphism (SNP) markers for resistance. The plant material consisted of 110 rutabaga (B. napus ssp. napobrassica), 35 canola, 40 Brassica rapa, and 15 Brassica oleracea accessions or cultivars, alongside 11 hosts of the European Clubroot Differential (ECD) set. These materials were screened for resistance under greenhouse conditions and were genotyped using a 19K Brassica SNP array. Three general linear models (GLM), four mixed linear models (MLM), and three GWAS methods were employed to evaluate the markers. Eleven non-commercial Brassica accessions and 9 out of 35 commercial canola cultivars displayed a low normalized area under the disease progress curve (AUDPCnorm.). The non-commercial accessions could prove valuable as potential sources of resistance against V. longisporum. Forty-five SNP markers were identified to be significantly associated with V. longisporum resistance using single-SNP based GWAS analysis. In comparison, haplotype-based GWAS analyses identified 10 to 25 haplotype blocks to be significantly associated with V. longisporum resistance. Between 20% and 56% of QTLs identified by the more conventional single-SNP based GWAS analysis were also detected by the haplotype-based GWAS analysis. The overlapping genomic regions identified by the two GWAS methods present promising hotspots for marker-assisted selection in the future development of Verticillium stripe-resistant canola.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3