Evaluating the Impact of Nitrogen Application on Growth and Productivity of Maize Under Control Conditions

Author:

Hammad Hafiz Mohkum,Chawla M. Shakeel,Jawad Rashid,Alhuqail Asma,Bakhat Hafiz Faiq,Farhad Wajid,Khan Faheema,Mubeen Muhammad,Shah Adnan N.,Liu Ke,Harrison Matthew T.,Saud Shah,Fahad Shah

Abstract

Climatic conditions significantly affect the maize productivity. Among abiotic factors, nitrogen (N) fertilizer and temperature are the two important factors which dominantly affect the maize (Zea mays L.) production during the early crop growth stages. Two experiments were conducted to determine the impact of N fertilizer and temperature on the maize growth and yield. In the first experiment, the maize hybrids were screened for their sensitivity to temperature variations. The screening was based on the growth performance of the hybrids under three temperatures (T1 = ambient open-air temperature, T2 = 1°C higher than the ambient temperature, and T3 = 1°C lower than the ambient temperature) range. The results showed that an increase in temperature was resulted less 50% emergence and mean emergence (4.1 and 6.3 days, respectively), while emergence energy and full emergence were higher (25.4 and 75.2%, respectively) under the higher temperature exposure. The results showed that Syngenta 7720 and Muqabla S 25W87 were temperature tolerant and sensitive maize hybrids, respectively. The second experiment was carried out to study the response of the two selected maize hybrids (Syngenta 7720 and Muqabla S 25W87) to four N fertilizer applications. The results revealed that the maximum N use efficiency (19.5 kg kg−1) was achieved in maize hybrids with low N application (75 kg N ha−1 equivalent to 1.13 g N plant−1). However, the maximum maize grain yield (86.4 g plant−1), dry weight (203 g plant−1), and grain protein content (15.0%) were observed in maize hybrids that were grown with the application of 300 kg N ha−1 (equivalent to 4.52 g N plant−1). Therefore, it is recommended that the application of 300 kg N ha−1 to temperature tolerant maize hybrid may be considered best agricultural management practices for obtaining optimum maize grain yield under present changing climate.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3