Non-destructive monitoring of amylose content in rice by UAV-based hyperspectral images

Author:

Wang Fumin,Yi Qiuxiang,Xie Lili,Yao Xiaoping,Zheng Jueyi,Xu Tianyue,Li Jiale,Chen Siting

Abstract

Amylose content (AC) is an important indicator for rice quality grading. The rapid development of unmanned aerial vehicle (UAV) technology provides rich spectral and spatial information on observed objects, making non-destructive monitoring of crop quality possible. To test the potential of UAV-based hyperspectral images in AC estimation, in this study, observations on five rice cultivars were carried out in eastern China (Zhejiang province) for four consecutive years (from 2017 to 2020). The correlations between spectral and textural variables of UAV-based hyperspectral images at different growth stages (booting, heading, filling, and ripening) and AC (%) were analyzed, and the linear regression models based on spectral variables alone, textural variables alone, and combined spectral and textural variables were established. The results showed that the sensitive bands (P< 0.001) to AC were mainly centered in the green (536∽568 nm) and red regions (630∽660nm), with spectral and textural variables at the ripening stage giving the highest negative correlation coefficient of -0.868 and -0.824, respectively. Models based on combined spectral and textural variables give better estimation than those based on spectral or textural variables alone, characterized by less variables and higher accuracy. The best models using spectral or textural variables alone both involved three growth stages (heading, filling, and ripening), with root mean square error (RMSE) of 1.01% and 1.04%, respectively, while the models based on combined spectral and textural variables have RMSE of 1.04% 0.844% with only one (ripening stage) or two (ripening and filling stages) growth stages involved. The combination of spectral and textural variables of UAV-based hyperspectral images is expected to simplify data acquisition and enhance estimation accuracy in remote sensing of rice AC.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

Reference38 articles.

1. Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran;Bagchi;Food Chem.,2016

2. Prediction of rice starch quality parameters by near-infrared reflectance spectroscopy;Bao;J. Food Sci.,2001

3. The changes of eating and cooking quality of indica early rice in different cropping seasons;Bao;J. Zhejiang Univ. (Agricultural Life Sciences),2000

4. Relating satellite imagery with grain protein content” In Spatial Knowledge without Boundaries. Proceedings of the Inaugural Conference of the Spatial Sciences Institute;Basnet,2003

5. Rice end-use quality analysis;Bergman,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3