A wheat spike detection method based on Transformer

Author:

Zhou Qiong,Huang Ziliang,Zheng Shijian,Jiao Lin,Wang Liusan,Wang Rujing

Abstract

Wheat spike detection has important research significance for production estimation and crop field management. With the development of deep learning-based algorithms, researchers tend to solve the detection task by convolutional neural networks (CNNs). However, traditional CNNs equip with the inductive bias of locality and scale-invariance, which makes it hard to extract global and long-range dependency. In this paper, we propose a Transformer-based network named Multi-Window Swin Transformer (MW-Swin Transformer). Technically, MW-Swin Transformer introduces the ability of feature pyramid network to extract multi-scale features and inherits the characteristic of Swin Transformer that performs self-attention mechanism by window strategy. Moreover, bounding box regression is a crucial step in detection. We propose a Wheat Intersection over Union loss by incorporating the Euclidean distance, area overlapping, and aspect ratio, thereby leading to better detection accuracy. We merge the proposed network and regression loss into a popular detection architecture, fully convolutional one-stage object detection, and name the unified model WheatFormer. Finally, we construct a wheat spike detection dataset (WSD-2022) to evaluate the performance of the proposed methods. The experimental results show that the proposed network outperforms those state-of-the-art algorithms with 0.459 mAP (mean average precision) and 0.918 AP50. It has been proved that our Transformer-based method is effective to handle wheat spike detection under complex field conditions.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference43 articles.

1. YOLOv4: Optimal speed and accuracy of object detection;Bochkovskiy;ArXiv abs,2020

2. Transfer learning between crop types for semantic segmentation of crops versus weeds in precision agriculture;Bosilj;J. Field Robotics,2020

3. Cascade r-CNN: Delving into high quality object detection;Cai,2018

4. End-to-End object detection with transformers;Carion,2020

5. SLICING THE WHEAT GENOME;Catherine;Science,2014

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3