Comprehensive and evolutionary analysis of Spodoptera litura-inducible Cytochrome P450 monooxygenase gene family in Glycine max elucidate their role in defense

Author:

Yadav Manisha,Panwar Ruby,Rustagi Anjana,Chakraborty Amrita,Roy Amit,Singh Indrakant K.,Singh Archana

Abstract

Plants being sessile organisms and lacking both circulating phagocytic cells and somatic adaptive immune response, have thrived on various defense mechanisms to fend off insect pests and invasion of pathogens. CYP450s are the versatile enzymes, which thwart plants against insect pests by ubiquitous biosynthesis of phytohormones, antioxidants, and secondary metabolites, utilizing them as feeding deterrents and direct toxins. Therefore, a comprehensive analysis of biotic stress-responsive CYPs from Glycine max was performed to ascertain their function against S. litura-infestation. Phylogenetic analysis and evolutionary studies on conserved domains and motifs disclosed the evolutionary correspondence of these GmCYPs with already characterized members of the CYP450 superfamily and close relatedness to Medicago truncatula. These GmCYPs were mapped on 13 chromosomes; they possess 1-8 exons; they have evolved due to duplication and are localized in endoplasmic reticulumn. Further, identification of methyl-jasmonate, salicylic acid, defense responsive and flavonoid biosynthesis regulating cis-acting elements, their interaction with biotic stress regulating proteins and their differential expression in diverse types of tissues, and during herbivory, depicted their responsiveness to biotic stress. Three-dimensional homology modelling of GmCYPs, docking with heme cofactor required for their catalytic activity and enzyme-substrate interactions were performed to understand the functional mechanism of their action. Moreover, to gain insight into their involvement in plant defense, gene expression analysis was evaluated, which revealed differential expression of 11 GmCYPs upon S. litura-infestation, 12 GmCYPs on wounding while foliar spray of ethylene, methyl-jasmonate and salicylic acid differentially regulated 11 GmCYPs, 6 GmCYPs, and 10 GmCYPs respectively. Our study comprehensively analysed the underlying mechanism of GmCYPs function during S. litura-infestation, which can be further utilized for functional characterization to develop new strategies for enhancing soybean resistance to insect pests.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference116 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3