Polarized distribution of extracellular nucleotides promotes gravity-directed polarization of development in spores of Ceratopteris richardii

Author:

Cannon Ashley E.,Vanegas Diana C.,Sabharwal Tanya,Salmi Mari L.,Wang Jeffrey,Clark Greg,McLamore Eric S.,Roux Stanley J.

Abstract

Gravity directs the polarization of Ceratopteris fern spores. This process begins with the uptake of calcium through channels at the bottom of the spore, a step necessary for the gravity response. Data showing that extracellular ATP (eATP) regulates calcium channels led to the hypothesis that extracellular nucleotides could play a role in the gravity-directed polarization of Ceratopteris spores. In animal and plant cells ATP can be released from mechanosensitive channels. This report tests the hypothesis that the polarized release of ATP from spores could be activated by gravity, preferentially along the bottom of the spore, leading to an asymmetrical accumulation of eATP. In order to carry out this test, an ATP biosensor was used to measure the [eATP] at the bottom and top of germinating spores during gravity-directed polarization. The [eATP] along the bottom of the spore averaged 7-fold higher than the concentration at the top. All treatments that disrupted eATP signaling resulted in a statistically significant decrease in the gravity response. In order to investigate the source of ATP release, spores were treated with Brefeldin A (BFA) and gadolinium trichloride (GdCl3). These treatments resulted in a significant decrease in gravity-directed polarization. An ATP biosensor was also used to measure ATP release after treatment with both BFA and GdCl3. Both of these treatments caused a significant decrease in [ATP] measured around spores. These results support the hypothesis that ATP could be released from mechanosensitive channels and secretory vesicles during the gravity-directed polarization of Ceratopteris spores.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3