An analysis of sugary endosperm in sorghum: Characterization of mutant phenotypes depending on alleles of the corresponding starch debranching enzyme

Author:

Hashimoto Shumpei,Okada Satoshi,Araki-Nakamura Satoko,Ohmae-Shinohara Kozue,Miura Kotaro,Kawaguchi Hideo,Ogino Chiaki,Kasuga Shigemitsu,Sazuka Takashi

Abstract

Sorghum is the fifth most important cereal crop. Here we performed molecular genetic analyses of the ‘SUGARY FETERITA’ (SUF) variety, which shows typical sugary endosperm traits (e.g., wrinkled seeds, accumulation of soluble sugars, and distorted starch). Positional mapping indicated that the corresponding gene was located on the long arm of chromosome 7. Within the candidate region of 3.4 Mb, a sorghum ortholog for maize Su1 (SbSu) encoding a starch debranching enzyme ISA1 was found. Sequencing analysis of SbSu in SUF uncovered nonsynonymous single nucleotide polymorphisms (SNPs) in the coding region, containing substitutions of highly conserved amino acids. Complementation of the rice sugary-1 (osisa1) mutant line with the SbSu gene recovered the sugary endosperm phenotype. Additionally, analyzing mutants obtained from an EMS-induced mutant panel revealed novel alleles with phenotypes showing less severe wrinkles and higher Brix scores. These results suggested that SbSu was the corresponding gene for the sugary endosperm. Expression profiles of starch synthesis genes during the grain-filling stage demonstrated that a loss-of-function of SbSu affects the expression of most starch synthesis genes and revealed the fine-tuned gene regulation in the starch synthetic pathway in sorghum. Haplotype analysis using 187 diverse accessions from a sorghum panel revealed the haplotype of SUF showing severe phenotype had not been used among the landraces and modern varieties. Thus, weak alleles (showing sweet and less severe wrinkles), such as in the abovementioned EMS-induced mutants, are more valuable for grain sorghum breeding. Our study suggests that more moderate alleles (e.g. produced by genome editing) should be beneficial for improving grain sorghum.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3