Light spectra of biophilic LED-sourced system modify essential oils composition and plant morphology of Mentha piperita L. and Ocimum basilicum L

Author:

Beatrice Peter,Saviano Gabriella,Reguzzoni Marcella,Divino Fabio,Fantasma Francesca,Chiatante Donato,Montagnoli Antonio

Abstract

Investigating morphological and molecular mechanisms that plants adopt in response to artificial biophilic lighting is crucial for implementing biophilic approaches in indoor environments. Also, studying the essential oils (EOs) composition in aromatic plants can help unveil the light influence on plant metabolism and open new investigative routes devoted to producing valuable molecules for human health and commercial applications. We assessed the growth performance and the EOs composition of Mentha x piperita and Ocimum basilicum grown under an innovative artificial biophilic lighting system (CoeLux®), that enables the simulation of natural sunlight with a realistic sun perception, and compared it to high-pressure sodium lamps (control) We found that plants grown under the CoeLux® light type experienced a general suppression of both above and belowground biomass, a high leaf area, and a lower leaf thickness, which might be related to the shade avoidance syndrome. The secondary metabolites composition in the plants’ essential oils was scarcely affected by both light intensity and spectral composition of the CoeLux® light type, as similarities above 80% were observed with respect to the control light treatments and within both plant species. The major differences were detected with respect to the EOs extracted from plants grown under natural sunlight (52% similarity in M. piperita and 75% in O. basilicum). Overall, it can be speculated that the growth of these two aromatic plants under the CoeLux® lighting systems is a feasible strategy to improve biophilic approaches in closed environments that include both plants and artificial sunlight. Among the two plant species analyzed, O. basilicum showed an overall better performance in terms of both morphological traits and essential oil composition. To increase biomass production and enhance the EOs quality (e.g., higher menthol concentrations), further studies should focus on technical solutions to raise the light intensity irradiating plants during their growth under the CoeLux® lighting systems.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3