Rapid Transcriptional Reprogramming Associated With Heat Stress-Induced Unfolded Protein Response in Developing Brassica napus Anthers

Author:

Lohani Neeta,Singh Mohan B.,Bhalla Prem L.

Abstract

Climate change associated increases in the frequency and intensity of extreme temperature events negatively impact agricultural productivity and global food security. During the reproductive phase of a plant’s life cycle, such high temperatures hinder pollen development, preventing fertilization, and seed formation. At the molecular level, heat stress-induced accumulation of misfolded proteins activates a signaling pathway called unfolded protein response (UPR) in the endoplasmic reticulum (ER) and the cytoplasm to enhance the protein folding capacity of the cell. Here, we report transcriptional responses of Brassica napus anthers exposed to high temperature for 5, 15, and 30 min to decipher the rapid transcriptional reprogramming associated with the unfolded protein response. Functional classification of the upregulated transcripts highlighted rapid activation of the ER-UPR signaling pathway mediated by ER membrane-anchored transcription factor within 5 min of heat stress exposure. KEGG pathway enrichment analysis also identified “Protein processing in ER” as the most significantly enriched pathway, indicating that the unfolded protein response (UPR) is an immediate heat stress-responsive pathway during B. napus anther development. Five minutes of heat stress also led to robust induction of the cytosolic HSF-HSP heat response network. Our results present a perspective of the rapid and massive transcriptional reprogramming during heat stress in pollen development and highlight the need for investigating the nature and function of very early stress-responsive networks in plant cells. Research focusing on very early molecular responses of plant cells to external stresses has the potential to reveal new stress-responsive gene networks that can be explored further for developing climate change resilient crops.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3