Genome-wide identification of bHLH transcription factors: Discovery of a candidate regulator related to flavonoid biosynthesis in Erigeron breviscapus

Author:

Gao Qingqing,Song Wanling,Li Xia,Xiang Chunfan,Chen Geng,Xiang Guisheng,Liu Xiangyu,Zhang Guanghui,Li Xiaoning,Yang Shengchao,Zhai Chenxi,Zhao Yan

Abstract

Erigeron breviscapus is a Compositae plant, and its rich flavonoids have shown strong preventative and curative effects in the treatment of cardio- and cerebrovascular diseases. bHLH genes play a crucial role in plant growth and development. There are 116 EbbHLH genes in E. breviscapus, and each gene has been named based on its chromosome location. Our phylogenetic analysis divided these genes into 18 subfamilies. To further investigate its function, EbbHLH80 was isolated from E. breviscapus leaves. Next, transcriptomic and metabolomic analyses of tobacco leaves were performed. Among 421 differentially accumulated compounds, 98 flavonoids were identified. In addition, differentially expressed genes were identified using RNA-seq, and further analysis suggested that EbbHLH80-OE could not only regulate the expression of some structural genes in the flavonoid biosynthesis pathway to achieve flavonoid accumulation but also be involved in the regulation of a series of downstream pathways, such as stress response, ABA and ethylene signal transduction, to affect plant growth and development. The results of our analysis provide new insights into the function of EbbHLH80 and lay the foundation for future functional studies on E. breviscapus.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3