An artificial intelligence-integrated analysis of the effect of drought stress on root traits of “modern” and “ancient” wheat varieties

Author:

Licaj Ilva,Felice Domenico,Germinario Chiara,Zanotti Clarissa,Fiorillo Anna,Marra Mauro,Rocco Mariapina

Abstract

Due to drought stress, durum wheat production in the Mediterranean basin will be severely affected in the coming years. Durum wheat cultivation relies on a few genetically uniform "modern" varieties, more productive but less tolerant to stresses, and "traditional" varieties, still representing a source of genetic biodiversity for drought tolerance. Root architecture plasticity is crucial for plant adaptation to drought stress and the relationship linking root structures to drought is complex and still largely under-explored. In this study, we examined the effect of drought stress on the roots’ characteristics of the “traditional” Saragolla cultivar and the “modern” Svevo. By means of “SmartRoot” software, we demonstrated that drought stress affected primary and lateral roots as well as root hair at different extents in Saragolla and Svevo cultivars. Indeed, we observed that under drought stress Saragolla possibly revamped its root architecture, by significantly increasing the length of lateral roots, and the length/density of root hairs compared to the Svevo cultivar. Scanning Electron Microscopy analysis of root anatomical traits demonstrated that under drought stress a greater stele area and an increase of the xylem lumen size vessel occurred in Saragolla, indicating that the Saragolla variety had a more efficient adaptive response to osmotic stress than the Svevo. Furthermore, for the analysis of root structural data, Artificial Intelligence (AI) algorithms have been used: Their application allowed to predict from root structural traits modified by the osmotic stress the type of cultivar observed and to infer the relationship stress-cultivar type, thus demonstrating that root structural traits are clear and incontrovertible indicators of the higher tolerance to osmotic stress of the Saragolla cultivar. Finally, to obtain an integrated view of root morphogenesis, phytohormone levels were investigated. According to the phenotypic effects, under drought stress,a larger increase in IAA and ABA levels, as well as a more pronounced reduction in GA levels occurred in Saragolla as compared to Svevo. In conclusion, these results show that the root growth and hormonal profile of Saragolla are less affected by osmotic stress than those of Svevo, demonstrating the great potential of ancient varieties as reservoirs of genetic variability for improving crop responses to environmental stresses.

Funder

Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3