Assessing performance of simplified bioassays for soil-borne pathogens in smallholder systems of western Kenya

Author:

Mutai Joyce C.,Stewart Jane E.,Medvecky Beth,Dobbs John T.,Vanek Steven J.,Ojiem John,Chege Gabriel,Fonte Steven J.

Abstract

IntroductionSoil-borne pathogens cause considerable crop losses and food insecurity in smallholder systems of sub-Saharan Africa. Soil and crop testing is critical for estimating pathogen inoculum levels and potential for disease development, understanding pathogen interactions with soil nutrient and water limitations, as well as for developing informed soil health and disease management decisions. However, formal laboratory analyses and diagnostic services for pathogens are often out of reach for smallholder farmers due to the high cost of testing and a lack of local laboratories.MethodsTo address this challenge, we assessed the performance of a suite of simplified soil bioassays to screen for plant parasitic nematodes (e.g., Meloidogyne, Pratylenchus) and other key soil-borne pathogens (Pythium and Fusarium). We sampled soils from on-farm trials in western Kenya examining the impact of distinct nutrient inputs (organic vs. synthetic) on bean production. Key soil health parameters and common soil-borne pathogens were evaluated using both simple bioassays and formal laboratory methods across eleven farms, each with three nutrient input treatments (66 samples in total).Results and DiscussionThe soil bioassays, which involved counting galls on lettuce roots and lesions on soybean were well correlated with the abundance of gall forming (Meloidogyne) and root lesion nematodes (e.g., Pratylenchus) recovered in standard laboratory-based extractions. Effectiveness of a Fusarium bioassay, involving the counting of lesions on buried bean stems, was verified via sequencing and a pathogenicity test of cultured Fusarium strains. Finally, a Pythium soil bioassay using selective media clearly distinguished pathogen infestation of soils and infected seeds. When examining management impact on nematode communities, soils amended with manure had fewer plant parasites and considerably more bacterivore and fungivore nematodes compared to soils amended with synthetic N and P. Similarly, Pythium presence was 35% lower in soils amended with manure, while the Fusarium assays indicated 23% higher Fusarium infection in plots with amended manure. Our findings suggest that relatively simple bioassays can be used to help farmers assess soil-borne pathogens in a timely manner, with minimal costs, thus enabling them to make informed decisions on soil health and pathogen management.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3