Deep learning for plant bioinformatics: an explainable gradient-based approach for disease detection

Author:

Shoaib Muhammad,Shah Babar,Sayed Nasir,Ali Farman,Ullah Rafi,Hussain Irfan

Abstract

Emerging in the realm of bioinformatics, plant bioinformatics integrates computational and statistical methods to study plant genomes, transcriptomes, and proteomes. With the introduction of high-throughput sequencing technologies and other omics data, the demand for automated methods to analyze and interpret these data has increased. We propose a novel explainable gradient-based approach EG-CNN model for both omics data and hyperspectral images to predict the type of attack on plants in this study. We gathered gene expression, metabolite, and hyperspectral image data from plants afflicted with four prevalent diseases: powdery mildew, rust, leaf spot, and blight. Our proposed EG-CNN model employs a combination of these omics data to learn crucial plant disease detection characteristics. We trained our model with multiple hyperparameters, such as the learning rate, number of hidden layers, and dropout rate, and attained a test set accuracy of 95.5%. We also conducted a sensitivity analysis to determine the model’s resistance to hyperparameter variations. Our analysis revealed that our model exhibited a notable degree of resilience in the face of these variations, resulting in only marginal changes in performance. Furthermore, we conducted a comparative examination of the time efficiency of our EG-CNN model in relation to baseline models, including SVM, Random Forest, and Logistic Regression. Although our model necessitates additional time for training and validation due to its intricate architecture, it demonstrates a faster testing time per sample, offering potential advantages in real-world scenarios where speed is paramount. To gain insights into the internal representations of our EG-CNN model, we employed saliency maps for a qualitative analysis. This visualization approach allowed us to ascertain that our model effectively captures crucial aspects of plant disease, encompassing alterations in gene expression, metabolite levels, and spectral discrepancies within plant tissues. Leveraging omics data and hyperspectral images, this study underscores the potential of deep learning methods in the realm of plant disease detection. The proposed EG-CNN model exhibited impressive accuracy and displayed a remarkable degree of insensitivity to hyperparameter variations, which holds promise for future plant bioinformatics applications.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3