Development of highly discriminatory SCoT- and CBDP-based SCAR fingerprint for authentication of Indian senna (Senna alexandrina Mill.) formerly Cassia angustifolia Vahl.)

Author:

Chouksey Sarika,Ashfaq Mohd Ashraf,Kaira Pushkar,Farhat Sabnam,Pandey Maneesha,Kumar Ch. Anil,Nagaraja Reddy Rama Reddy

Abstract

IntroductionIndian senna (Senna alexandrina Mill.) (formerly Cassia angustifolia Vahl.) is an important medicinal plant of the family Fabaceae. The leaves and pods of Indian senna yield sennosides and rhein-based laxative. Adulteration of Indian senna is a serious issue as with most of the medicinal plants used in the Indian systems of traditional medicine. The bulk of dried leaves and pods of morphologically related species, such as Cassia fistula, Senna occidentalis, Senna sophera, and Senna tora, is usually mixed with those of the Indian senna, and the admixture is used in laxative-based formulations. The present investigation is a modest attempt at developing species-specific start codon targeted (SCoT) polymorphism- and CAAT-box-derived polymorphism (CBDP)-based sequence-characterized amplified region (SCAR) markers for the identification and authentication of Indian senna and four adulterant species (C. fistula, S. occidentalis, S. sophera, and S. tora species).MethodsIn this study, genomic DNA extracted from 44 accessions of Indian senna and four adulterant species was subjected to SCoT and CBDP PCR. The polymorphic amplicons were identified, eluted, ligated, and transformed into Escherichia coli DH5 α strain. PCR, restriction analysis, and DNA sequencing confirmed the transformed recombinant plasmid clones.ResultsPost-sequencing, the sequence of the primary SCoT and CBDP primers was analyzed and extended into the unique signature sequence of the concerned accessions. This resulted in development of one SCoT-44- and two CBDP-25-based SCARs. SCoT-44 SCAR produced a signature amplicon of 287 bp for accession DCA120, and CBDP-25 SCAR yielded signature amplicons of 575 and 345 bp for accessions DCA13 and DCA119, respectively. The developed SCAR markers were validated across 48 samples (44 accessions of Indian senna and 4 adulterant species) and produced distinct amplicons in Indian senna only, while no such amplicon was observed in the other four adulterant species.DiscussionThe information generated using these markers have been faithfully converted to single-locus, unequivocal, highly reproducible, and informative sequence-based SCAR markers. These markers will enable discrimination of individual plants on the basis of unique sequence-specific amplicons, which could be used as diagnostic markers to settle issues pertaining to the true identity of Indian senna.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3