A method of cotton root segmentation based on edge devices

Author:

Yu Qiushi,Tang Hui,Zhu Lingxiao,Zhang Wenjie,Liu Liantao,Wang Nan

Abstract

The root is an important organ for plants to absorb water and nutrients. In situ root research method is an intuitive method to explore root phenotype and its change dynamics. At present, in situ root research, roots can be accurately extracted from in situ root images, but there are still problems such as low analysis efficiency, high acquisition cost, and difficult deployment of image acquisition devices outdoors. Therefore, this study designed a precise extraction method of in situ roots based on semantic segmentation model and edge device deployment. It initially proposes two data expansion methods, pixel by pixel and equal proportion, expand 100 original images to 1600 and 53193 respectively. It then presents an improved DeeplabV3+ root segmentation model based on CBAM and ASPP in series is designed, and the segmentation accuracy is 93.01%. The root phenotype parameters were verified through the Rhizo Vision Explorers platform, and the root length error was 0.669%, and the root diameter error was 1.003%. It afterwards designs a time-saving Fast prediction strategy. Compared with the Normal prediction strategy, the time consumption is reduced by 22.71% on GPU and 36.85% in raspberry pie. It ultimately deploys the model to Raspberry Pie, realizing the low-cost and portable root image acquisition and segmentation, which is conducive to outdoor deployment. In addition, the cost accounting is only $247. It takes 8 hours to perform image acquisition and segmentation tasks, and the power consumption is as low as 0.051kWh. In conclusion, the method proposed in this study has good performance in model accuracy, economic cost, energy consumption, etc. This paper realizes low-cost and high-precision segmentation of in-situ root based on edge equipment, which provides new insights for high-throughput field research and application of in-situ root.

Funder

Department of Education of Hebei Province

Publisher

Frontiers Media SA

Subject

Plant Science

Reference53 articles.

1. Image processing with ImageJ;Abramoff;Biophotonics Int.,2004

2. SegNet: A deep convolutional encoder-decoder architecture for image segmentation;Badrinarayanan;IEEE Trans. Pattern Anal. Mach. Intell.,2017

3. A device for the observation of root growth in the soil;Bates;Nature,1937

4. Surveying the plant’s world by magnetic resonance imaging;Borisjuk;Plant J.,2012

5. Encoder-decoder with atrous separable convolution for semantic image segmentation;Chen,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3